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SOME FUNCTION SPACES AND THEIR APPLICATIONS TO
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Nicky K. Tumalun, Denny I. Hakim and Hendra Gunawan

Abstract. In this paper we prove Fefferman’s inequalities associated to potentials be-
longing to a generalized Morrey space or a Stummel class. We also show that the logarithm
of a non-negative weak solution to a second order elliptic partial differential equation with
potential in a generalized Morrey space or a Stummel class, under some assumptions, be-
longs to the bounded mean oscillation class. As a consequence, this elliptic partial differential
equation has the strong unique continuation property. An example of an elliptic partial dif-
ferential equation with potential in a Morrey space or a Stummel class which does not satisfy
the strong unique continuation is presented.

1. Introduction and statement of main results

Let 1 < p< ooand ¢ : (0,00) = (0,00). The generalized Morrey space LY :=
Lr#(R"), which was infroduced by Nakai in [14], is the collection of all functions
fe Ll (R") satisfying
B
oo = s | == [ li@rar| <
b 1-&61"._135[} w(r) Y Y I
|z—y|<r
Note that LF'¥ is a Banach space with norm || - ||ge.-. If o(r) = 1, then LP¥ = LP, If
@(r) = r", then LP¥ = L. If @(r) = v* where 0 < A < n, then LP¥ = LP is the
classical Morrey space introduced in [12].
We will assume the following conditions for ¢ which will be stated whenever
necessary.

(i) There exists C' > 0 such that
s<t=p(s) < Cplf). (1)
We say that ¢ is almost increasing if o satisfies this condition.

2020 Mathematics Subject Classification: 26010, 46E30, 35715
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2 Function spaces and their applications to elliptic PDEs

(ii) There exists C' > 0 such that

2ls) _ Lot
Iq“ - f“

We say that ()i~ is almost decreasing it (i)t~ satisfies this condition.

s<t=

(2)

iii) For 1 < a < n, 1< p <2, there exists a constant C' > 0 such that for everyd > 0,
p o o
oo
wl(t) s E(1—a)
| T py e < 0580, )
4

One can check that the function p(f) ="~ “F, t = (), satisfies all conditions (1), (2),
and (3). Moreover, for a non-trivial example, we have the function ¢u(t) = log(p(t) +
1) = log(t" ¢ 1), t = 0, which satisfies all conditions above.

Let M be the Hardy-Littlewood maximal operator, defined by

1
M) By o / F()] dy

Bz,r)

for every f € LL _(R™). The function M(f) is called the Hardy-Littlewood @ax-
imal function. Notice that, for every f € L} (R") where 1 < p < oo, W(f)(z)
is finite for almost all + € R™. Using Lebesgue Differentiation Theorem, we have
[flz)| < M(f)(z), for every f € L} _(R") and for almost all # € R". Furthermore,
for every f € L{, (R") where 1 < p < oc and 0 < v < 1, the nonnegative func-
tion w(z) := [M(f)(z)]” is an A; weight, that is, M(w)(z) < C(n,y)w(z). These
fundamental properties can be found in [6].

We will need the boundedness result for the Hardy-Littlewood maximal operator
on generalized Morrey spaces LP¥, that is, ||M{f)||pee < Cln,p)||f||Le=, for every
fe L¥¥, where 1 < p < oo and ¢ satisfies conditions (1) and (2). This bounded-
ness result was stated in [14,15,18]. Our assumptions here on ¢ are similar to [18].
Note that in [14], the proof of this houndedness result relies on a condition about
the integrability of @(t)#~"+t1) over the interval (&, 00) for every positive number 4.
Meanwhile, other assumptions on ¢ can be found in [15].

Let l <p<ooand 0 < a < n. For V € L (R"), we write

loc

T

Viiy)|P
Na,pV(r) == :—33- / % dy T = 0.
r—yl<r

We call 74,V the Stummel p-modulus of V. If 54,V (r) is finite for every r > 0,
then 7, ,V (r) is nondecreasing on the set of positive real numbers and satisfies
NapV(2r) < C(n,a) .,V (r), for every r > 0. The last inequality is known as
the doubling condition for the Stummel p-modulus of V' [21, p.550].

For each 0 < o« < nand 1 < p < oo, let .E}n_p ={V e LI (R") : NapVi(r) <

loc

oo for all ¥ = 0} and S, , = {V € LY (R™) . apV (r) < oo for all r > 0 and

loc N
l_ing} o pV (r) = 0}, The set S, , is called a Stummel class, while S, ;, is called a

bounded Stummel modulus class. For p =1, S, 1 := S, are the Stummel classes
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which were introduced in [17]. We also write SI,J = S, and 11 1= Na. 1t was shown

in [21] that g(_,__p contains S p properly. These classes play an important role in

studying the regularity theory of partial differential equations (see [23] for example),

and have an inclusion relation with Morrey spaces under certain conditions [20, 21].
Now we state our results for Felferman’s inequalities.

TuEOREM 1.1, Let 1 <a<n,1 <p< 2, and v satisfy conditions (1), (2), (3). If
Ve LP¥ then

/\u(:lr)r" [V(z)|dz < C||V||Lo-w f [Vu(z)|" dr (4)
Rll Rll

for every u € C5=(R").

THEOREM 1.2, fetl <p<oo, 1 <a <2 anda<n. IfV € gnr_‘,,(ll%“]. then there
erists a constant C := C'(n,«) > 0 such that

] [V ()P |u(x)|” dz < Clia pV (r0)]” f |[Vu(z)|” dz,
Bxo.ro) Bzp,rn)
or every ba o= Blrg, ) T R" and v € C5° (R"™) with supplu) C By.
y ball B, B JCR d CRe (R"™) with supp(u) C B,

REMARK 1.3. The assumption that the function u belongs to C7* (IR") in Theorem 1.1
and Theorem 1.2 can be weakened by the assumption that u has a weak gradient in
a ball B C R" and a compact support in B (see [22, p.480]).

In 1983, C. Fefferman [5] proved Theorem 1.1 for the case V € LP"~ 27, where
1 < p < §. The inequality (4) is now known as Fefferman’s inequality. Chiarenza
and Frasca [2] extended the result [3] by proving Theorem 1.1 under the assumption
that V € LP"~ ", where 1 < a« < nand 1 < p < Z. By setting ¢(f) = "7 in
Theorem 1.1, we can recover the results in [2] and [5]. There is also an inequality
stated in [19, Proposition 1.8] which may be related to Theorem 1.1. However we
cannot compare this inequality with Theorem 1.1.

For the particular case where V € Sp, Theorem 1.2 was proved by Zamboni [23],
and can be also concluded by applying the result Fabes ef al. in [4, p.197] with
an additional assumption that V' is a radial function. Although 5}[. C 5‘2 whenever
1< a <2 (21, p.b53], the authors still do not know how to deduce Theorem 1.2 from
this result.

It must be noted that Theorems 1.1 and 1.2 are independent to each other, which
means that LP"~ 9P where 1 < o < mand 1 < p < 2, is not contained in S, ,.
Conversely, Sap 1s not contained in LP"~“F. Indeed, if we define V| : R" — R by

the formula Vi(y) := |y|™®, then Vi € LP""2F but V| ¢ S, ,. For the function

Vo @ B" — R which is defined by the formula Vao(y) := |y|_1%_. we have Vi € §“__p__ but
1’:2 é [pn—ap

In order to apply Theorems 1.1 and 1.2, let us recall the following definitions. Let
2 be an open and bounded subset of B". Recall that the Sobolev space H!'(Q))

e L3(0)

: . L. du
is the set of all functions u € L?*(Q) for which the weak derivative 5
(e Hir




4 Function spaces and their applications to elliptic PDEs

for all i = 1,....n, and is equipped by the Sobolev norm ||ul|g1(a) = [|ul/z2(0) +
S gf | . The closure of C2°(£1) in H'(£2) under the Sobolev norm is denoted

‘0
by H(€).
Define the operator L on H}(2) by

4 du - u
Lu:=— — |aji— | + by + Vu 5
e o, ( 4 dir; ) Zl ox; (3)
ij= i=

where a;; € L™(Q), b; (4,7 =1....,n) and V is a real valued measurable function on
™. Throughout this paper, we assume that the matrix a(z) := (a;; (z)) is symmetric
on (2 and that the ellipticity and boundedness conditions

n

L)

NEP < ) ag(a)gg; < A7) (6)
ig=1
hold for some A > 0, for all £ € B, and for almost all = € (.
In (5), we assume either:
i satisfies (1), (2), (3) (1 < o < 2),
bf elP? i=1,...,n, (7)

Ve L n Ly (R"),

1<a<2,
or, eS8, i=1,...n, (8)
V€ Sa.
We say that u € H}(£2) is a weak solution to the equation
Lu=10 (9)
if i a”EE _ib.ail_.-‘. + V) | dr =0, (10)

: Or; dx; <~ 'O,
0 A\hi=l i=1
for all v € H{(2) (see the definition in [23]). Note that, in the case o = 2, the
equation (9) was considered in [23]. If we choose b; = ( for all i = 1,...,n, then (9)
becomes the Schriding@ equation.

A locally integrable function f on R" is said o be of bounded@hean oscillation
on a ball B C R", we write f € BMO,(B) where 1 < o < oo, if there is a constant

C' > 0 such that for every ball B’ C B, (ﬁ' |fly) — fe]” dy) ’ < C. By using
»

Holder’s inequality and the John-Nirenberg theorem (see [16]), we can prove that
BMOu(B) = BMO(B) := BMO(B).

As an application of Theorems 1.1 and 1.2 to equation Lu = 0 {9), we have the
following result.

THEOREM 1.4. Suppose that o satisfies (T) or (8). Let uw = 0 be the weak solu-

tion to the equation Lu = 0 and B(xz,2r) C Q where r < 1. Then log(u + §) €
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BMO,(B(x,r)) for every § > 0.

In the case & = 2, Theorem 1.4 was obtained in [23]. To the best of our knowledge,
the assumptions in (7) have never been used for proving Theorem 1.4 as well as the
assumption a € [1,2) in (8).

Let w & Lllw(Q) and w > 0 in 2. The function w is said to vanish with infinite
order at zy € Q if lim,._,; m [ w(z)dr =0,%k > 0. The equation Lu = 0,

B{-bn-.fJ
which is given in (9), is said to have the strong unique continuation property
in (1 if for every nonnegative solution u which vanishes with infinite order at some
xp € Q, then w = 0 in B(xo,r) for some r = 0. See this definition, for example
in [7,10].
Theorem 1.4 gives the following result.

CororLLary 1.5. The equation Lu = 0 has the strong unique continuation property
in ).

This strong unique continnation property was studied by several authors. For
example, Chiarenza and Garofalo in [2] discussed the Schrédinger inequality of the
form Lu + Vu > 0, where the potential V belongs to Lorentz spaces LT (Q). For
the differential inequality of the form |Au| < |V||u|, where its potential also belong
to L7 (), see Jerison and Kenig [10]. Garofalo and Lin [7] studied the equation (9)
where the potentials are bounded by certain functions.

Fabes et al. studied the strong unique continuation property for Schrodinger equa-
tion —Au + Vu = 0, where the assumption for V is radial function in S, [4]. Mean-
while, Zamboni [23] also studied the equation (9) under the assumption that the po-
tentials belong to Ss. At the end of this paper, we will give an example of Schridinger
equation —Au+Vu = 0 that does not satisfy the strong unique continuation property,
where V e LPm—% or V e §j for all 3 > 4.

2. Proofs

In this section, we prove Fefferman’s inequalities, which have been state as Theo-
rems 1.1 and 1.2 above. First, we start with the case where the potential belongs to
a generalized Morrey space. Second, we consider the potential from a Stummel class.
Furthermore, we present an inequality which is deduced from this inequality.

2.1 Fefferman’s Inequality in Generalized Morrey Spaces

We start with the following lemma for potentials in generalized Morrey spaces.

LEmmaA 2.1, Let 1 < p < 0o and @ satisfy the conditions (1) and (2). If1 <~ <p
and V € LP#, then [M(|V|")]7 € Ay N LP%.

The proof of Lemma 2.1 uses a fundamental fact from [6] and %e boundedness of
the Hardy-Littlewood maximal operator on generalized Morrey spaces.
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LeEmma 2.2, Let "iefy the conditions (1), (2), and (3). If V € LP¥?, then

Vi)l , o
[ e < CapIVIE

o—1

M(V)(2)]

Proaf. Let & . 0. Then

V Vi(y) V(y)
L Ry Ry e T
B [T =Y |e—y|<d |z —yl |w—y| =6 |z =y

Using [9, Lemma (a)], we have

V

f L)'_l dy < C(n)M(V)(z)d. (12)
lo—yl<s [T —yl™

For the second term on the right-hand side (11), let g = n— §{a+1), we use Hélder's

inequality to obtain

. 24—
./ Vil dyZ/ V(y)lz —yl>*" dyy
|x—y|2>6|x73f|n_1 ' |z—yl= \I—yl’i’ '

Vil B
< / | (y)lr dy | = f |z —y
|z—y|>d |z —yle ' & —y|=d

By applying the condition (3), we have

oo -
JEL VG,
a—ylzs [T =Yl 25 < a—y|<ak1s [T — Yl

p=1
B

{;',L+1—HJ{,—,P_1]dy) . (13)

k=0
o k41 gy p2tEs oo

p(2°774) (i)
<C|VIE,.. L[ 1dt < C||V]||h f dt
= HLJ = (zg‘.d]rﬁ_l 2ht1s - ||LJ 5 Fa+l
S Cv L"Hiy..s 5!1—;}(.\—51. (14]

Since n + (% +1- ”‘J(;TJ—)T] < (), we obtain
f @ —y| TG dy = C(n, p,a)s™ GG, (15)

|e—y|=4

Introducing (14) and (15) in (13), we have

v
/ | (y}.l,L dy < C
|e—y|=d |z — y

p—1

1 . -
V”L?‘" (d‘n—;}m—q),’, (5“4—(;—!’-{-1—“}{?’21}) r

= C||V||goe6' 77 (16)
From (16), (12) and (11), we get
V o 1
/ W4 < oMV @)s + CfV|1ewbt (17)
Bn T —yl"
For 6 = ||L"||§,,_V. 1\1(1”)[;1.‘]]"%, the inequality (17) becomes
[Viy)l . Lk TR REES BT
/l“ Wﬂf?} < C[M(E' )[37]]1 =V e = C[MU" J(ilf)] = V]| Epoe- |
pn [T —1

Now, we are ready to prove Fefferman’s inequality in generalized Morrey spaces.
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Proof (of Theorem 1.1). Let 1 < v < pand w = [M({|V]") ]L. Then w e Ay N LM¥
according to Lommfi 2.1. First, we will show that (4) holds for w in place of V.
For any u € C§(IR"), let B be a ball such that « € C§°(B). From the well-known
inequality

v
|u(r)\<(*f Vuly)l J| dy, (18)

Tonelli’s theorem, and Lemma 2.2, we ha.we

] [z )| ew(: ]da:—/ [u(z)|*w(z) de
Rn B 8

< Ol . L fu(@)[* [ Vu(@)|[M () (@)] = e, (19)

Holder’s inequality and Lemma (2.1) imply fh'ﬂ'

a—1

8 i :
A\u(x”“‘”?u(x)|[M[u,')[J: = t dr < (/ [Vl r)|“dr) (/ [w(x)]|* M (w)(x) r)
: ’ “w(z) dr ’ ‘
(/ |Vu(z) r) (L|11(r) w(z) r) (20)

Substituting (20) into (19), we obtain

1 !—1
[ @@ I ( |vE(x)|“d.r); (/ i uterar) ™
- B B

Therefore, [, [u(z)|*w(z)dr < Cllw||pee [ [Vulz)|* de and [V ()] = [|V(;r]|“]1l <
[M(|V(z)]7) T = = w(z). Hence, from the boundedness of the Hardy-Littlewood maxi-
mal oporfitor on generalized Morrey spaces and Lemma 2.1, we conclude that

/ [u(z)|* |V (z)| de < / [u(z)|*w(z) de < C / [Vu(z)|” dr
En En B
< C||V||Le» / |[Vu(z)|” dz. O

We have already shown in Theorem 1.1 that Fefferman’s inequality holds in gen-
eralized Morrey spaces under certain conditions.

2.2 Fefferman’s Inequality in Stummel Classes

We need the following lemma to prove Fefferman’s inequality where its potentials
belong to Stummel classes. This lemma can be proved by Hedberg's trick [9]. For
the case av = 2, this lemma can also be deduced from the property of the Riesz kernel
which is stated in [11, p. 45].

LEMMA 2.3, Letl < «v g2 and o < n. For any ball By C R", the following inequality

holds:
/ “_l dy < C"_L . Tz€ By, TFz.

dole =y gyt T e E Y
o
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The following theorem is Fefferman’s inequality where the potential belongs to a
Stummel class.

Proaf (of Theorem 1.2). The proof is separated into two cases, namely o = 1 and
1 < e < 2. We first consider the case o« = 1. Using the inequality (18) together with
Fubini's theorem, we get

z)|P
[ [ue(z) ||V () |P d < C‘[ Vi) Lﬂ_ldr .
: Ba By |JL‘ — |n
<(vf V(@) ver
J o T oy drdy.
) ! ! B(y,2rg) |z — y|n—1 Y

It follows from the last inequality and the doubling property of Stummel p-modulus
of V' that fB“ [u(z)||V{z)|P dr < C 1o pV (1o fB |Vu(z)| dz, as desired.

We now consider the case 1 < o < 2. Using the inequality (18) and Hélder's
inequality, we have

i =117 |2
/ [u(z)|™ |V (x)|P de < (,"/ [Vul(y)| L@ Vi)

By By By |z —y[n—t

56‘([ |vu(y)|‘-‘)" U P(y)%dy) L@
By By

(=) [V ()| ey . ‘
where F(y =g dz, y € By. Applying Hélder's inequality again,
BH -

| 1 -
' V@B N\ ([ m@EVEP )T
Fly) < ([ T dx =1 dz
Bo [T — B, |z—ul
s0 that

1
) a H”(.]_‘)“U ] a—1 |'U, ‘“lL |p
] Fly)==dy 5/ UB o= yn1 W'My
=f. u(2)[°|V (2)]PG(2) dz, (22)

1
vy |V{z)|P AT o
where G(z) 1= f” (]B.. P 1|7' YT dr dy, z € By. By virtue

of Minkowski's integral inequality (or Fubini’s theorem for o = 2), we see that

a-1
1
Gl < f V@I f W1 dy dz. (23)
0 By |z —y|= 1|z —y|» !

Combining (23), doubling property of Stummel p-modulus of V', and the inequality
in Lemma 2.1, we obtain

V()P = .
Glz)<C (] ||(71)|_d-i-‘> < Cliga pV (ro)]= 7. (24)
Bo

x — 2"

dx dy

we have
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Now, (22) and (24) give i
f [F()[5% dy < Cliap V(o)) ® [ W@V @) de. (25)
0 By

Therefore, from (21) and (25), we get

f|ur|“|1 z)|Pdz
L ' rv;l
< Clra, Viro)l? (/ Wu(r)\‘*dr) (/ ()| |V (x |f’d:r) )
By By

Dividing both sides by the third term of the right-hand side of (26), we get the desired
inequality. U

=

3. Applications to elliptic partial differential equations

The two lemmas below tell us that if a function vanishes with infinite order at some
xp € (1 and fulfills the doubling integrability over some neighborhood of xy, then the
function must be identically zero in the neighborhood.

Lemma 3.1 ([8]). Let w € L} _(Q) and B(zo,r) C Q. Assume that there exists a
constant C' > 0 satisfying fB{:.u.: w(r)dr < ('fB u'( Vdr. If w vanishes with

infinite order at xo, then w =0 in B(zo,r).

LemMA 3.2. Let w € L] (Q) and Bz, 1) C Q_ and 0 < 3 < 1. 499?¢me that there
exists a constant C' > 0 satisfying fBu”_rJ w’(r)dr < C fB yw' Ax)de. If w

vanishes with infinite order at xy, then w =0 in B(xy, r).

The proof of Lemma 3.2 can be adapted after that of Lemma 3.1 (see [3,8]).

The following lemma has been used by many authors in working with elliptic
partial differential equations (for example, see [3,23]). This lemma and the idea of its
proof can be found in [13].

LEmMA 3.3. Let w : @ — R and B(z,2r) be an dffen ball in Q. If log
BMO(B) with B = B(x,r), then there exists M > 0 such that fB{:z:.Q:J w? (y) dy <

Mz me_IJ w?(y) dy for some 0 < 3 < 1.

Theorems 1.1 and 1.2 are crucial in proving Theorem 1.4.

Proof (of Theorem 1.4). Letd > 0 be given. Since u € H}(Q) and u > 0, then there is
a sequence {u; 2, in C5°(£) such that uy, + 6 > 0, for every k€ N, up +6 s u+46
a.e in €, and limg o ||ug ul[ iy =0 (see [1, p.Q-l] .

Let ¢ € C5&(B(z,2r)), 0 < < 1, [Vy| < Cyr Y, and v := 1 on B(z,r). For
every k € N, we have ¢! /(u; + §) € H}(Q). Using this as a test function in the
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weak solution definition (10), we obtain

ol o
' o P (1
(aVu, Viup +4)) ——=75 = (a+ /{aTu Vi) ———
Of () oy =~ (04 D)
firt1 frrt1
_Z/ du _yer /L”u Y . (27)
(31 (y, —d) (uy, + 8)
=g 0

Since supp(vr) C Bz, 2r), the inequality (27) reduces to
.L“n+1 et

(aVu, V(up +4)) =(a+1) / (aVu, Vi)

(ug +4)* (up +4)
Bz 2r) B(x,2r)
()H l'“_H' u,n+l
—Z Vu———.  (28)
01( (g —d) (g +6)
i= ]'B{J. 2r) B(x,2r)

We will estimate all three terms on the right-hand side of (28). For the first term,
according to (6), we have

| (aVu, Vi) | < A7 V||V (29)

Combining Young’s inequality sv < es? + ﬁi# for every € > 0 (s,v > 0) and the
inequality (29), we have for every € > 0

frex

(a+1) [ {aVu, Vi)

(ur + 6)
Biz,2r)
_ Vul? AHa+1) / .
<edla+1 e o T2
<€A (a+1) / (m__d)zt " |V
B(x,2r) B(x,2r)
_ Viu+4§))? A Ha+1) .
<) L 1 | n+L_ 7 -!'2. 30
<atery [ LG [ e @
Biz2r) Bix2r)

To estimate the second term in (28), we use Hélder's inequality, Young's inequality
and Theorem 1.1 or Theorem 1.2, to obtain

: :
: het L
b, du e _ < [Vul? Bl pypetl
Ox; (up +48) (up + d)* '
B(x,2r) Blx,2r) B(xr,2r)
7|2
{E |YU| _ tl:-|n+]. s 1 (JZl'f'“
“n (g, + 6)2 4ne !
B(x,2r) Bix2r)
€ |[Vul? 1 1.
<-— 7..t.g.“+ I Vab|™. 31
“n / (ug + 6)? dne * V¥l (31)
B(x,2r) B(z,2r)

for every i = 1,...,n, where the constants C}’s depend on n, c, ||| s.o 0 5,b7(ry).
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From (31) we have

{)u ypott [V{w+d)* 0 1
< L (. T |?, :
Z f i (up, +0) ‘ [ (ug, + 6)2 v 46(2 f VeIt (32)

T

BU. 2r) Bx,2r) Bz, 2r)
where (% depends on max{(C}. The estimate for the last term in (28) is
ol y
/ Vu—t— < / y et o (33)
(uy, + 9) (g, + &)
Blz,2r) Bla,2r)
Introducing (30), (32), and (33) in (28), we get
_ ) patl
f {(aVu, Viug +4)) m
Blx2r)
<exa+1) f V2 D o 202 1) / Vo
- (g, + d)2 de !
Bx,2r) B{x,2r)
+48)? 1 +4
/ |v ” | n+]. _(;2 ] |V1-!"|“ 1 / Vv [‘H ) 'L".'“_. (34)
(uy + 6)2 e (ug +0)
Bx,2r) Bix,2r) Bix,2r)

for every k € M.

Since (uy, +4) — (u+48) a.e. in Q and uw+ 4 > 0, then
1 1
i +0)  (urd)
For j,i =1,...,n, we infer from (35)
du+48) u 1 . dlu+8) du 1
Or; v (up +46)? dr;  Or; (u+4§)?
For every k € N, we have

,a.e. infl. (35)

,a.e. in B(z, 2r). (36)

:r?(u—d] u 1 _| < :f}(ﬂ_d]:: du i (37)
drj  Ovi(uy +68)2| — | Ovy | |dwi| 62
o / :(')(‘ilt 75) du | | L < L du ai . <005 (38)
dr; ||0x:| 6% = 82 || ox; L2 190%i | 2(q)

B(x.2r)
since u € H}(Q1). The properties (36), (37), and (38) allow us to use the Lebesgue
Dominated Convergence Theorem to obtain

. (3[11 +4) du 1 A +48) du 1 |
1 — | =0. 39
e / Oz O (g + 6)2 dr; Oz (u+4d)?| (39)

k— oo
Bix,2r)

By Holder’s inequality, we also have

/ :('3(1:;‘.—65) dlu+46)\ du 1 |
| dx; B dx; T].‘((u;fﬁ]Q-

Blx,2r)
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1 || a(uy) u || 1
SF [ om; 05l a ey @ < i ey (40

(Blx,2r))
for all k£ € N. Since limy, oo ||ug — wl g2y = 0, from (40) we get

Y / 5((’?(11;. +4) 0(11—5]) du 1 [_o (41)

[ dz dz; Oz; (ug +6)? |
B(z,2r)
Note that
/ | du Auy +8)  ott a du du+d) ot |
Bl | Yoz, Oz (wp +8)2 Yor, dz;  (u+6)?|
- [l || Loe / | (uw+d) Ou 1 Au+d) du 1
- 42 dry  Ori (up +96)2 dry Oz (u+6)?|
B(z,2r)
N Hai.}Hf"{SEJ / | 5(“}- +4) ?3(“!.1—07 .{I)u 1 | (42)
52 | dr; az; Az (up +6)?|
Bix,2r)
for all £ € N. Combining (39), (41), and (42), we have
_ ) ol
li Vu, V +0)) ———=
e B(x,2r) aVe, Vius + ) (ug + d)*
B L Ju A(u +6)  yot! 7[ e o L wett
n _Zl &-ll,n;- L{;.Q;?i'] dr;  dz;  (w+8)2 B(Lz,(_]n.vu. Viu+0)) (u+8)2°
Py 2r) . .2r)
(43)
From (35),
|V(”_5]|2 el |V("_5]|2 ekl .
IMATT L b " ae. in Bz, 2r). Ee!
(up +0)2 ! — (a0 1 ,a.e in B(x, 2r) (44)
For every k € I, we have
[V(u+8 1 o _
= L gt < (w4 8) A EY
g VT S V)R (45)
L _ | 1 )
and 5—.2|V(H—d)| < 5_-2”””!1”{&!] < 00, (46)
B(z,2r)

since 1 £ LY erefore, Volax), |40, (4], an £pesgue ominate SOonver-
i H}(12). Therefore, by (44), (45), (46), and Lebesgue Dominated C

gence Theorem,
7o L Y2 = Y2
lim / |V (u ¢]| patl — ] |V (u .d.” et (47)
koo (‘ug 7@]2 (‘H*d)z
B(x2r) Bz,2r)
+4 +4
We also have V(u—.)u!"“ =V (u .)
(uy, + 0) (u+a)

Pt =V ae inB(x,2r) (48)
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because of (35). For every k € M, we have
v (u+ d? y
(g +48)
If the assumption (7) holds, then

1 ) 1 .
f viurs <t ] WVl + 5]
0 0

| 1 -
< SVl (49)

B(x,2r) Bix,2r)
1 1
2 2
1 : . -
<3 f V|? ] lu+d*| < oo, (50)
Bix,2r) {x,2r)

since V' € Lﬁ“.(ll&) and v € H}(Q2). On the other hand, if the assumption (8) holds,
then V € 5§, € 57 by virtue to [21, p.554]. Therefore, using Theorem 1.2 we have

1 . 1 1 .
] Vol < & ] I+ — ] V| + 6
i) i) 44

Bix2r) Biz,2r) Bz 2r)
<! V] ! C(n)naV(r) |Vul? < oo (51)
=3 16\ / e 0
B(x,2r) B(x,2r)

since u € H}(Q). Combining (48), (49), (50) or (51), we can apply the Lebesgue
Dominated Convergence Theorem to have

lim f V—((”_dj Yo = / Ve, (52)

i— 00 Uk + 5)
Bz, 2r) Bx2r)

Theorem 1.1 or Theorem 1.2 allow us to get the estimate
Ve < Gy ] Vo, (53)
B{z,2r) Bzar)

where the constant ('3 depends on n,a, and [|V||se or noV(rg). Letting k — oc
in (34) and applying all informations in (43), (47), (52), and (53), we obtain

. . u'ln+].
{_n.Vu.V(u—d))m
B(z,2r)
_ Viu+d))? . A a+1) .
<ed Ha+1) f | (u—o‘J?' Pt 4 "> |Ve)?
Biz,2r) Bix2r)

Viuw+d)? [ Ca ., e -
ve [ Hmmreage [ weree [ ower oo

B{x2r) B{z2r) B{x,2r)
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Notice that, by the ellipticity condition (6),
S (2 ekl
A f |V {(u+d)| yatt < f (aViu, V(u + 8)) —

(u+d)2 ° - (u+48)2°
B(x,2r) B(x2r)

Moreover, by choosing € := the inequality (54) is simplified by

1_ A
Zlat1)F1°

Viu+d)? : - Ee
/ M+ F 3‘ Pt < (,'4/ Vyl? —(,tr,] [V, (55)
Blr2r (u+0) B{z,2r) Blx,2r)

where the constant C'y depends on e and A, while the constant C5 depends on C' and
('y. Therefore, (55) implies

, . Viu+&)|* i1
V log(u + 8)|? <f |7”,L“m+
/BUJ-J| % "< Blzor (w+d)2 7

< (:r,‘/ |v1’|.-||2 . lr,'[;/ |Vu"'\” < el (?"_Q?"“ 4 e ?"“) — (,'T‘_Q?"“.
Biz.2r) Bix2r)

The last constant €' depends on 'y and C5. From Hélder's inequality,

1 R . .
—/ |V log(u+ 48)|° < — |Vilog(u+8)* < Cr 2,
rr Blz.r) rr Bix,r)
1 - .
whence — |V iog(u +46)|" < Cr™“. (56)
™ S B,y

By using Poincaré’s inequality together with the inequality (56), the theorem is
proved. u

By virtue of Theorem 1.4, we have the following corollary.

COROLLARY 3.4. Suppose o satisfies (T) or (8). Let u = 0 be a weak solution to the
equation Lu = 0 and B(x,2r) C Q where r < 1. Then, for every § =0, loglu+4) €
BMO.(B(z,r)).

Gathering Lemma 3.1, Lemuma 3.2, Lemma 3.3, and Corollary 3.4, we obtain the
unique continuation property of the equation Lu = 0 stated in Corollary 1.5.

Proof (of Corollary 1.5). Given x € Q, let B := B(x,r) be a ball where B(x,2r) C Q
and r < 1. Let {4, } be a sequence of real numbers in (0, 1) which converges to 0. From
Corollary 3.4, we get log(u +6;) € BMO,(B). Therefore log(u +6;) € BMO(B).
According to Lemma 3.3, there exists a constant M > 0 such that

f u”(y)dygf (u(y)—an”d:a;gu%f (uly) +4,)" dy.
B(x,2r) B(x,2r) ’ B(x,r) ’

for some 0 < # < 1. Letting j — oo and using Lemma 3.1 or Lemma 3.2, we obtain
u=0in B(x, 2r) if u vanishes with infinite order at . (]

The example below shows that there exists an elliptic partial differential equation
which does not satisfy the strong unique continuation property where its potential
belongs to Morrey spaces LP"~* and Sj for all 3 > 4.
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ExampLe 3.5, Let Q= B(0,1) CB", w: Q — R and V' : B" — R be defined by the
formulae
exp(—|z[=H)[z| =Y, = € 0\{0}

w(z) = L

x =10,

and Vi) = 3(n+1)|z["2 — (n +5)|z|~* + |z|~*, = eR"\{0}
0_. T =10.

Note that w vanishes with infinite order at # = 0 and 1s a solution to the Schrédinger
equation —Au + Vu = 0. We also have V € 53 C g;;, for all 3 =4, and V ¢ S, for
1< a <2

Define V* = Vxn. Then V* : B® — R and w is a solution to the equation
—Au+V*u = 0. For y € B" and y # 0, we get [V*(y)| < (4n + 9)|y|™*. Given
x € R™ and r > 0, by the previous inequality, we have

1 1
/ [V* ()| dy < —/ ly|~* dy = C(n.p). (57)
|lx—yl<r |z—y|<r

rn—4p rn—dp
According to (57), we conclude that V* € LPm—4P, O

REMARK 3.6. The equation Lu = 0 has the strong unique continuation property
it V.b? € S,fori=1,....,nand 1 < a < 2 (see assumption (8)). In view of
Example 3.5, there exist V' € Sa, >4, and b; = 0 for i = 1,...,n such that the
equation Lu = () does not have the strong unique continuation property. However,
the authors still do not know whether Lu = 0 has the strong unigque continuation
property or not if V,b? € 8, fori =1,...,n and 2 < o < 4.

REMARK 3.7. The equation Lu = 0 has the strong unique continuation property if
V,b? € LP¥ where (7) holds. If we choose V € LP" P (ie. a = 4) as in Example 3.5
and b; = 0 fori =1, ..., n, then the equation Lu = ( does not have the strong unique
continuation property.
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