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Morrey spaces. Therefore, [ obtain that the Morrey spaces contain the vanishing Morrey spaces properly.

2010 Mathematical Subject Classification: 46E30, 42B35.
Keywords: Morrey spaces, vanishing Morrey spaces.

1. Introduction and Statement of The Main Result

Let 1<p <o and 0 <A <n.Afunction f € I’ (R") is said to be an element of the Morrey spaces

loc
LPA(R™) if
1

P
fllpa= sup (r‘ﬁf If(y)lpd}’) <o
" B(x,r)

xER™ r>0
For more information regarding to the Morrey spaces LPA(R™), see [1]. Now, for every f € LPA(R™), we set
)
M) = sup (r-" [ s dy) .
xeERN Blx,r)
The function f belongs to the vanishing Morrey spaces VIP*(R") if
}j_r}tl] My (r) = 0.
The vanishing Morrey spaces were introduced in [2] and have some applications in elliptic partial differential
equations, operator theory, and approximation in Morrey spaces [3, 4, 5].

It is clear from the definitions above that VLPA(R™) is a subset of LPA(R™). In [4], it stated that this
inclusion is proper without giving an explicit function which belongs to LP*(R™) but notin VLPA(R™). In
this paper, by using the idea of the proper inclusion between the bounded Stummel modulus classes and the
Stummel classes [6] (see also to be published [7] and [8]), we will give an example of that function. Although
there are some inclusion relations between the Morrey spaces and the Stummel classes for some appropriate
parameters [6, 9], but in general these relations may fail (submitted for publication [10]).
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Our main result is stated in the following theorem.
eorem 1. The vanishing Morrey spaces contain the Morrey spaces properly.
The proof of this theorem will be given in the next section.

2. Proof Of The Main Result

To prove the Theorem 1, we need to give an explicit function belongs to the Morrey spaces but not in the
vanishing Morrey spaces. The positive constant £ = C(n, 4 ), which means depending only on n and 4,
appears in this paper may be vary from line to line.

Let n beanintegernumbersuchthat n > 2, 0 <A <n,and 1 <p < . Foreveryinteger k = 3, setting
x, =(27%,0,...,0) € R" and

gn-Ak.y € p(x,,87K)
fe@) = [0 :y & B(x,,879).
We define a function f: R"™ — R which its formula is given by

1
> P
f0) = (Z fk(y)) : M
k=3

We claim that this function is an element of the Morrey spaces and is not an element of the vanishing
Morrey spaces. We need the following lemmas to prove this claim. In the rest of this paper, the notation of the
function f defined in (1).

Lemmal. f € [} (RM).

Proof. Let x € R" and r > 0. Note that

o o o
B rora=Y | iy Y se [ day=conY ek <on
sl k=3 " BTINB(x,,87%) =3 B(x.87K) k=3

The lemma is proved. =
Lemma 2. Let k >3 be an integer, x € R",and r > 0.If |x — x;| < 2(47%), then
| £ dy < C(n, )
B(xr)NB(x,87%)

Proof. We have two cases: (i) 2(87%) < |x — x| < 2(47%) or (ii) |x — x,| < 2(87%). For the case (i),

we obtain
2 )< Ix—xpl <lx—yl +ly —x| <r+8F=r 4 < gk
for every y € B(x,1) N B(x;, 87%). Hence
r-4 f feOG)dy =712 f 8-k gy < C(n)gAkgI-Dkg=—1k = ¢ (),
B(x,r)NB(x87%) B(x,r)NB(x;,87%)

For the case (if), it is easy to show that B(x;,87%) € B (x. 3(8"‘)). which implies

| fu)dy =1+ | 8-k gy < gn-n [ P
Bx,r) NB(xi87%) B(xr)NB(xi87%) B(xrINB(x)87%)
< 8(“"‘)"[ |x — y|™*dy = C(n,1)8-kgm=-DEHR) = ((n, 2).
B(x3(87%))

Combining the two cases results above, the lemma is proved. m
Using the Lemma 1 and the Lemma 2, we will show that the function f belongs to the Morrey spaces
LPA(R™).
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Lemma 3. f € I[PA(R").

Proof. From Lemma 1, f € L?

loc

B(xy,2(47%)) forevery k = 3,0r (ii) x € B(x;,2(47%)) for some j > 3. Assume the case (i) holds. For
j

(R™). Now, let x e R" and r > 0. There are two cases: (i) x &

every y € B(x,r) N B(x,,87%), we have
20 S x-Sl —yl+ly—xl <r+8F <r+47k

This means r~% < 4% and

B IfoPdy =Y e [ 1dy
B(xr) = B(x.rINB(x,,87F)

<C(n) Z gllgln-Akgnic — C(n)z 274 < oo, (2)
k=3 k=3

Assume the case (if) holds. Then there is only one j =3 such that x€ B (xj,2[4‘f)) and since
{B (xk,2(4"‘))} is a disjoint collection. We also obtain x & B (x,(, 2(4"")) for every k = 3 with k # j.
k=3

By virtue to Lemma 2 and the calculation of (2), we conclude

r4 f IfIPdy = ?’"‘Z f fiey) dy
B(x,r) =% VB .rInB(x8K)

=?’"‘f _ Jﬂ-(y)dyﬂ""Zf fie(y) dy
B(x.r)nB(x;871) =3 /BB (x.87%)

k=]
=)

< C(n,l)+C(n)ZZ"”‘<m_ 3)

k=3
k=j

Therefore,
1
J P
Ifllypa = sup {[r~ f IfOIPdy | = C(m4,p) <o,
xER" >0 B(xr)
in view of (2) and (3). This completes the proof. m
Lemma4. f & VLPA(R).
Proof.Let x € R" and 0 <r < 1.Choose an integer k suchthat 8% <. Then
P -1
(M) =7 IFGIIP dy =
B(xp.r) B(xy,87%)
> C(n)8"8"¢ = C(n) > 0.
Hence M} (r) bounded away from zero as r tendsto zero. m
Proof of The Theorem 1. Let f be defined by (1). According to the Lemma 3 and the Lemma 4, we have
f € LPARM\VLPA(RY). Hence VLPA(R™) is a proper subset of LPA(R™). m

Syay= [ gnray

B(x87%)
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