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SOME NOTES ON THE INCLUSION BETWEEN MORREY SPACES

PHILOTHEUS E. A. TUERAH AND NICKY K. TUMALUN"

(Communicated by L. Liu)

Abstract. In this paper, we show that the Momey spaces A{f"l (") cannot be contained in the
weak Morrey spaces w. .ﬁ.’i (") for g1 # q2. We also show that the vanishing Morrey spaces
¥ B(R") are not empty and properly contained in the Morrey spaces ./ (" ).

1. Introduction

Let 1 < p<g<e and n = 2. The Morrey space ..%ﬁ_‘f(l[ﬁ”) is the set of all
functions f € L‘EJC(R"] for which

. 1_L. .
Ilgp = sup |Bx.r)|a" 7| flleeipien) < o

xR =0

1
‘]J
£ ll2p ey = ( [ 1 u-nf’dy) |
JBixr)

Here B(x,r) is the open ball in Euclidean space IR" with center x and radius r, and
|B(x,r)| denotes its Lebesgue measure. Meanwhile, the weak Morrey space w4} (R")

is defined to be the set of all functions f € wL], (R") for which

where

L1
||f || W .-’(‘j, = sup |B(I.~ r:ll T F ”Jf ||L1'L”t.3t..r_rj ) < oo,

xR =0
where :

||.f||l'|'LJ’|:_B|:_.l'_i'J'I;I = Sl.lﬁrf H‘ E B(Ir F) . |f(1]| > T} |'l_, ]
1=

and |[{y € B{x,r) :|f(y]| = r}| also denotes the Lebesgue measure of the set {y < Bix,r):
| F(¥)| = t}. Now, we define

VMR = {.f' € H(RY) : lim Ay (r) = 0} :
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where

1 1
Wfl:!’:l = sup |B(x,r)|9 7 ||f||LPt_Bt_.r.rJ,'l-
xeR”
The set ¥.#%(IR") is called the vanishing Morrey space. 1t is clear that . #} (R") is
a subset of ..é’é‘.’(_f(lfﬁ"),

The Morrey spaces were introduced by C. B. Morrey [1] and the vanishing Morrey
spaces were introduced in [2]. Recently, many authors are attracted in studying the in-
clusion properties between Morrey spaces [3,4, 5, 6, 7, 8]. One interesting result stated
in [5, Remark 4.5], that is, the weak Morrey spaces w..ﬁf‘.’cﬁ (") cannot be contained
in the weak Morrey spaces w..fi’:'i(l[-&") and vice versa, for distinct values g, and g-.
This statement was deduced by a characterization of inclusion between weak Morrey
spaces and its parameters, which is proved by using Closed Graph Theorem and Mor-
rey norm estimate for the characteristic functions of balls [5, Theorem 4.4]. Regarding
to the inclusion between vanishing Morrey spaces and Morrey spaces over a bounded
domain, it was stated in [9] that the vanishing Morrey spaces are properly contained in
the Morrey spaces without giving an explicit counter example.

In this paper, we will prove that the Morrey spaces .#, (R") cannot be contained
in the weak Morrey spaces w.#J,(R") and the Morrey spaces .#,(R") cannot be
contained in the weak Morrey spaces w..ﬁ!ﬂfl (I&"), for different values ¢, and ¢g-. This
result is more general and sharp than the previous result in [5] since we can recover
that previous result and the fact that . .tf(l[ﬁ") is a proper subset of w..%./cf(l[ﬁ") (6,
Theorem 1.2]. We also note that our method here is different than in [5] because we
give a function which belongs to .#}, (R")\w.#}, (") and a function which belongs to
..%’;[R")\_w.ﬁﬁﬁ (R"). Furthermore, by using the idea in [8], we also show that the van-
ishing Morrey spaces ¥.#[}(IR") are non empty and properly contained in Ay (R")
by providing some examples.

The positive constant C that appears in the proofs of all theorems may vary from
line to line and the notation C = C(n, p.g) indicates that C depends only on n, p and
q.

2. A note on the inclusion between weak Morrey spaces

Let l<p<g<eand y= ﬁ < n. Define a function f :[E" — K by the formula

ly[*. y#0.

0. y—o. (1

fy) =

It is clear that 1 — %, < () and n— py > 0 by observing to the given assumptions.
The function f, that appears in Lemma 1 and 3, is defined by (1).

n fi

LEMMA 1. If x € B" and r >0, then |[fl|ppgry < Cre” "= Cri™4, where
C=Cln,p.q).
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Proof. Note that
[ iroway= | yI -y + | I~y
JBlxr) HIvlsla—yl<r} Hlx=yl<Iyl}{lx—y|<r}
=1+
Since n — py >0, we have

: -
I< / |r|_*""dr=C/ PP lgr = o Py
Hlvl=rt ™ ’ Jo

and

< / ey Py =C [l = o,
{lv—si<r]

by using polar coordinate for radial function. Therefore

3 l " i % 2y ,;L: n_n
1 lr sy = /.-; 1Oy gc(cm ) —Cri i,
JB(xr)

which proves the lemma. [

The following lemma is not hard to prove. We leave its proof to the reader.
LEMMA 2. Let s >0, M 20, and @ : (0,00) — [0,e0). If

sup () =M= sup @(t),

O<r<s St <o
then
sup (1) =
1=0
Using the above lemma, we can compute the weak Lebesgue norm of f on the
ball B(0,r) with arbitrary radius r.
. . —y+ n _sgn
LEMMA 3. Ifr >0, then ||f||,,trigio, =Cr " 7 =Cr 4 7, where C=C(n.p.q).

Proof. Let r be an arbitrary positive real number. Note that, for every r > 0, we

have

= |B(0,r)N B0, ;) . (2)

i

{y€B(0,r): |f(y)] >1} {w, CB(0.r): |y| < 1™

We now define @ : (0,00) — [0,20) by the formula

(1) = t|{y € B(0,r) : |f(y)] > 1}]7. 3)
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1
Forevery t =r ', we obtain 1 ¥ < r. Then
{y € BO.7): |f)] > 1} = B, V)| =Cr77,
by using (2). This gives us

1
" 1

(Hy € BOA:fO)| > hp =Ce (7)) =7, e (o). @)

On the other hand, for every ¢ < r~ ¥, we have r_rlf = r. Hence
H{y € B(O,r): [f(¥)] > 1}| = [B(0,r)] = Cr",

which comes from (2). Therefore,

tH{y € BOr): [f)] > 1} 7 =Cu(r™)7 = ek, Ve (0,677]. (5)

‘We obtain .
Ct' v, Wre (r )
‘P(T] = 1 n _
Ct(r")r =Ctrr, Wre(0.r77].
by virtue of (4) and (5). Observing ¢ non increasing on (r7,ee) and non decreasing
on (D,r_"']._ since 1 — % = () and ;—'J = 0 respectively, then

sup (p(r):Cr_H::: sup  @(r). (6)

r—Y<ree O<r=r ¥

Thus

R

: gl _agy
||.”|L1'L”(B(l[].rjjl =sup@(r) =Cr e =cCra "
o 10

that 1s concluded from Lemma 2. [

By taking Lemma 2 and Lemma 3 as the tools, we are ready to state and prove the
first main result of this paper.

THEOREM 1. Let 1 < p<q)<eoand | < p< gy <o Ifq) # g2, then ..f.fﬁﬁ[lfﬁ") g
w. iy, (R") and 45, (R") € w.#} (R").

Proof. We will only prove that ﬁfﬁﬁ (I2") is not contained by n"..'xi/(‘u:(ll-ﬁ"]‘ The
proof that . i’a’/(fl (IR") is not contained by w. ﬁ?:fl (IR") can be done by similar method.

Let yy =n/q, and f) : R" — R, defined by the formula

SV B AP o
.fl[.'*)—{ 0. y=0.

We will show that f, € .} (R")\w.#},(R"). Let x € R" and r > 0 be arbitrarily
given. According to Lemma 1, by replacing ¥ with ¥, we obtain

n n n £

T n
|Bx,r)| % Pl fillee By S Crit Pre it =C < e,
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This gives us

L1
1Al gy = sup  [Blx.r)[7]lfi

xR =0

LP(Bixa)) <= %

since x and r are arbitrary. Whence f) . %ﬁfl (I2"). By virtue to Lemma 3, we have

A1 LT N
VFill g = 1B | filliomon = Cr—pri—d — ol a),

Eed

Hence || fi]],, al = This is due to arbitrary r and ¢, # g2. We conclude that
h & n»'..ﬁf‘.?r;(l[ﬁ"]._Tluls._ we have already proved that .#, (R") € w.#,(R"). O
As an immediate consequence of Theorem 1, we recover the result from [5] which

is stated in the following corollary.

COROLLARY 1. Let l S p< gy <woand 1 < p < g2 <o, If g1 # g2, then
W. %“(lfﬁ") Z w. ﬂﬁ’,(l{&") and w. ﬂ’q,(l[@.") Z w. %“(R"j.

3. A note on the inclusion between Morrey spaces and vanishing Morrey spaces

Let 1 < p<g < and § =exp(—1 ip ) Define a function g: E" — K by the
formula 1
wy  \P
—p— , y7#0,
gly) = (m 4 (_In|_\'|}:) SRR (7)
0, y=0,

where ¥ is a characteristic function defined on B = B(0,4).
The function g in the following lemma is defined by (7). This following lemma
shows that the vanishing Morrey spaces in a non empty set.

LEMMA 4, g€ 1’.%{;(1&"].

Proof. Let x £ B" and r = 0 be arbitrarily given. Note that
11 ZB( v) !
|B(.‘C,J“]|"’ r ||g||L"t.B(_.-.'.rjj <C / ) n— ap d}r
Syl <lx—yl<r |x — y| g |1| 7 (In|y|)?

L
()
{le—vy|< ¥} _ap o ap -
{|x—y| <r} _}"ln “ |y 7 (In]y[)?

=]+l (8)

Now we have two cases, thatis, 0 < r or r < 8. Assume 8 < r, then we have

xe(y) 1 -1
I< | —oesdy= [ ————dy=C : 9
.[|.\-|<r ly|"(In|y|)= ! ./|.v|<6 ly|"(In|y|)= ! (hltcﬂ) )
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and
1 1
1= [y < [ dy
TR =TT (nyl)2 Jiosies ey (Infy—y])?
—1
=C|—=]. 10
(m(aJ) ' {0
since 1;’!’”’-""3(111(:))2 decreasing on interval (0,6). Assume r < 8. We have
I</ __1 C(;L)<C(_l> (11)
== 7 "': = ]
Jiyj<r [y (In]y])* In(r) In(5)
and
1 1
'”':/ — < [v| <r np g d‘;é/- ?d‘*
. {!:ﬂtl—\”l«ln; J lx—y|" o ly| i (In|y[)? Jx—y|<r [x—¥["(In|x —y[)*

—1 —1
:C(mn)gcﬂmm)’ (12)

since lfI"p"fq[ll]I:I:l:lz decreasing on interval (0,r) C (0,8). By virtue of (8), (9), (10),
(11), and (12), we conclude that

1_1 —1 37
IB(x,r)|e vllgllerry <I+H<C (m) .
where C = C(n, p.qg). This means g £ ..ﬂ;f(llﬁ”). We remaind to prove
lim.#¢(r) = 0. (13)

r—l

Forevery 0 < r < 8, we have shown that

1\7

This means (13) holds and the proof is done. L[l

Now we define a function that will play as an element of Morrey spaces but not in
the vanishing Morrey spaces. Let 1 << p << ¢ < ==. Forevery k € N, with £ = 3, we set
xp=(27% ..., 0) € R" and

8%, yeB(x.8%),
ug(y) = _ “k
0: ¥ E B(_‘Q‘-,S J

Define a function u : B" — & by the formula

Mﬂ=(iwug- (14)
k=3

We first claim that u belongs to the Morrey spaces .#, (R").
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LEMMA 5. u € .#) (R").
Proof. Let x € " and r > 0 be arbitrarily given. There are two casses: (i) x ¢

B(x;.2(47%)) for every k = 3, or, (ii) x € B(x;,2(47/)) for some j = 3. Assume (i)
holds. Then

20479) < xr—xe| < =yl +ly—x| < r+47F,

. _ . e — D
for every y € B(x,r) M B(x;, 8 "‘), This means r ¢ " < 4" % and

wp B w
ra "/ lu()|Pdy < 24“’ "r‘/ 84 "‘d},
Bl b Blxr)NB{x, 8F)
np_
C E -)i n |£ (15)

where C depends on n. Assume (ii) holds. Since {B(.rk,2(4_"‘)) tk=1 1s a disjoint col-
lection, then there is only one j = 3 such that x € B(x;.2(4 7)) and x ¢ B(.rk,2(4_’r‘))
for every k = 3 with &k # j. Note that

np _ e
rd "/ _ uj(}-‘Jd}-‘: ra "
JB{xr)NB(x;877)

where C depends on n, p, and g. By virtue of (16) and the computation of (15), we
have

/ 84ldy <C < o, (16)
BlxrinBix:; &)

np _
ré "[ [u(v)|Pd 1-—:‘*! "E/ g (v)dy
JB(xr) =3 Y Blxr)nBxe 875)
mp_
=r ”[ Cujly)dy
S Bl r)NB{x; 877)

np

o
iy ui (y)dy
=3 Bt..l'_i';Ith..l'R_g_R ;I

k#)
C CZ")':——HI;. (17)
ff?‘f

where C depends on n, p, and ¢. Combining (16) and (17), whence

1
L1 np P
|mnm«»wmww”=c@«"é |mmwﬂ <C<w,
o JB(x,r)

where C depends on n. p, and g. Therefore u € 4§ (R"). O

The following theorem states that the vanishing Morrey spaces is a non empty
proper subset of the Morrey spaces. This theorem is the second main result in this

paper.
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THEOREM 2. Let 1 < p < g <oo. Then ¥ . #(IR") is a non empty proper subset
of My (R").

Proof. According to Lemmad, ¥ .#{/(R") is non empty, and according to Lemma
5, the function u belongs to ..f,%ﬁf(R”). Therefore, we need only to show that u does
not belong to ¥.#(R"). Let 0 < r < 1. By the Archimedan property, there is an
integer k& = 3 such that & % = p. Then

npo
()" zCr [y = c ug(y)dy
Bix.r) Bixg.B-k)
—C 84 kdy > Cs—"*'f ldy =C >0,
Bixg 87%) Blx 87K

where C depends on n. This means .#(r) is bounded away from zero as r tends to
zero. Thus u ¢ ¥ #5(R"). O
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