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2 N. K. TUuMALUN aND P. E. A. TUERAH

1. INTRODUCTION

Recently, the regularity properties of the Dirichlet problem

(1.1 Lu=f,
' ue HL(Q)

where f belongs to some @rious Morrey spaces, have been studied by some authors (for ex-
ample, see [2L[3L[5]). Here €2 is bounded domain in R™, H}(£2) is the Sobolev spaces, and L is
divergent form elliptic operator defined in H{} (€)).

By using the assumption that / belongs to the Morrey spaces L'*(Q) for0 < A < n — 2,
Di Fazio [3] showed that the weak solution of (I.I) is the element of the weak Morrey spaces
wLP*(Q), where J—t =1- RE/\. For more sharp result, in the sense of inclusion between

Morrey spaces, Di Fazio [4] also proved that the weak solution of (1.1) is the element of the

weak Morrey spaces wL?*(€2), where i = 3 — —, by taking f from the Morrey spaces

2 n—A?
L2AQ)for0< A <n—2.

For the case n — 2 < A < n and f is in the Morrey spaces L'*(£2), Cirmi et. al [2] showed
that the weak solution (I.T) is bounded essentially in () and its gradient belongs to the Morrey
spaces LA (1), for somen — 2 < p < A.

Di Fazio has not investigated the regularity of the weak solution gradient of (I.I). In this
paper, we continue his works, which are different from that one by Cirmi et. al in case of
parameter A. We prove that the the weak solution gradient of (L.I) belongs to the weak Morrey
spaces wLP»*(Q), where pl;\ = 1 — —L5. by assuming f is in the Morrey spaces L'*(£2) for
D<A<n-2

2. DIRICHLET PROBLEM AND MORREY SPACES

Let €2 be an open, bounded, and connected subset of R™ with n > 3. These assumptions are
always assumed for (). For a € Q2 and » > 0, we define

B(G:T) = {y ceR": |,“} - Gl < T}:
and
Qa,r)=0NBla,r)={yeQ:|y—a| <r}.

For1 < p < ccand 0 < )\ < n, the Morrey space L'*(f2) is the set of all functions

f € LY(€)) which satisfies

1
1lls = sup (j / If(y)lrf;r;)-
acr>0 \ 7 Ofea,r)

Meanwhile, the weak Morrey space wL?*((2) is the set of all measurable functions f defined
on 2 which satisfies

sup
acQ,1=0

For ¢ = 1,2, let W'4(£2) is denoted the Sobolev spaces. The closure of Cj°(02) in Wh4(£2)
is denoted by W, “(£2). We consider the following second order divergent elliptic operator

. du
21 Lu=— — |ai;— ],
@D ! I; dz; (n ) 5'-'1«’:') '

where u € W% (Q),

A
re

s
(snp&n t{z € Qa,r) : flz) > !,}|F) e

a;; € L=(Q) ih,i=1,...,n,
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and there exists # > () such that
VIEP <) ai()&E, < v
i=1

for every £ = (&,,...,&,) € R" and for almost every € 2. We also assume a regularity
condition of the coefficients a; ; of the operator L, that is,

lasgl@) — a:j(@)| < w(E=4l)  Vay e,
where w : (0,00) — (0, c¢) is non-decreasing, satisties
w(2t) < Cw(t)

for a constant ' > () and for all £ > 0, and

< w(t
/ Qdﬂ < 00,
o !

Let f € L"*(€2). We are interested in investigating the following Dirichlet problem

Lu=f,
(22) { u € Wi (Q),

where L is defined by .
The function u € H"},dﬂ) is called the weak solution of equation if

2.3) ]ﬂz - )()u( df)'(f f( 2)o(x)dz,

dx; O,

i,5=1

for all ¢ € C5°(€2).

. TooLs

Theorem 3.1 (Griiter and Widman, [6]). There exists a unique function G : QxQ — RU{cc},
G = 0, such that for each y € Q0 and any r > ()

(3.1) G(-,y) € WH(Q\B(y, r)) N W, (Q),
and for all ¢ € C7°(Q), n
0G (z,y) 0¢(x) ,
32 % dr = ¢(y).
(2) | 2 a4y () S DT e = (1)
Furthermore, there exists a positive constant Cy = C(n, v) and Cy = Cy(n, v,w, Q) such that
1

(33) (’(I 4‘,‘) < (’{JW;
and
(34) [VG(z,y)| < Cri——

|z —y|1

Jorall x,y € Q, withx # y.

AJIMAA, Vol. 18 (2021), No. 2, Art. 14,7 pp. AJTMAA




4 N. K. TUuMALUN aND P. E. A. TUERAH

The function G in Theorem [3.1]is called the Green function for L and Q). Fix y € (1.

According to (3.I), G(-,y) has a weak derivative in 2, which is denoted by (’(’d{:"’} Therefore
OG (x,y) do(x)

35 ——¢(z)dr = — | G(z,y)———dz,

(3-3) L dx; 9(z) /Q (z,9) dx; '

for all ¢ € C°(Q2).
Let M be the Hardy-Littlewood maximal operator, defined by

1
M(e) = sup o [ Irwldn
; B{xzr)

forevery f € L} (R").

loc

Theorem 3.2. [1] Let 0 < X\ < n,a € Q,andr > 0.If f € L"*(Q), then there exists a positive
constant C, which is independent from a and r, such that

(3.6) supt |[{x € Qa,r) : M(f)(x) >t} < Cr | [l 2.

£=0

The first proof of Theorem[3.2]was given by [1]. For more simple and elegant proof of this
theorem, we refer to [7].

4. AN INTEGRAL OPERATOR AND MAIN RESULT

From now on, we always assume that 0 < A < n — 2. Let (¢ be the Green function for L and
Q. For f € L'**(Q2), we define

(4.1 ulx) 2/(_?(;1:,;;)_{(;;)({;;
1)
for every x € (2. Next we define
JG(z, 1
(42) ui(x) = / ﬂf (y)| dy,
0 dx;

for every i el ..... nandx € (2.

We note that the function u which is defined by (4.1) is the unique weak solution of (2.2).

This fact can be seen in [3].

Theorem 4.1. There exists a constant C' > () such that

A—n _A-n—l
43) T {2 € Qar) ¢ |ui(@)] > ] < O fllas
Joreverya e R",r > 0,andt > 0.

Proof. Letx € Qand § > 0. By virtue of (3.4), we first estimate
|f ()l dy :/ |f ()] dy +/ If(;r,r)l_ dy=1,+1,
¢ ¢

|z —yl*1 2e,2s) |7 — Y| NBe2s [T —y["!
We bound /; by using the Hedberg estimation, that is,
L <C)oM(f)(z).

AJMAA, Vol. 18 (2021), No. 2, Art. 14,7 pp. AJMAA
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Now we compute the bound of 7, as follows,

I, :/ 1/ (w)xaly)| dy /2 f(:;)xﬂ(:;ﬂ(h}

26< |z —y| |1 —y[~? ko<|o—yl<aierg [T — y[m!

X)) P i) / FW)xaly)ld:
= LiAn ), ulay
o (zk 15 n— 1(2a 15 2d <yl <21 Q0
} A—n+1 = 2A g A—rni+1
<O Nl Y0 (G ) = COn NI laad® "
k=1
Therefore
@4 Ly < 0 M@ + 1)
0 —_

by using the estimations of /; and I,. We choose

_ M(.f)(ﬂf)) =
= (T

to minimize the right hand side of (.4). Then

@5) f O < cn M () ()52 e
{

)z =yt

Note that, according to (3.4) and (4.5)), then

|/ (y)] Agnel
Ty < CM(f)(2) = (Ifll A
o |z —y|*~

(4.6) lui(z)] < C

for every = € 2, where C'= C(n, A,C}). Let a € 2 and r > 0. For every ¢ > (), we have

{z e Qa,r): |u(z)| >t} < H;z: € Qa,r) : M(f)(z) > Cf7=eT 1||H|£1§ IH

Now we use Theorem[3.2]to obtain

—n—1

H.}:EQ(&J) M(f)(z) > Ct== | f e H

Pl AHfH =
S(" A—n—1 Llnl\ H
o EE oo

where C' > 0 is independent from a, r, and ¢{. This means

—n n—1
e [z € Qa,r) : |u(z)| >t} <(’:)‘||f||L1;‘ e
foreverya € 2,r > 0,and ¢ > 0. 5

Lemmad2. u; £ L'(Q) foreveryi =1,...,n.

AJIMAA, Vol. 18 (2021), No. 2, Art. 14,7 pp.
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Proof. Let a € €. Since 2 is bounded, then we can choose r > 0 such that {2 C B(a,r). This
means ) = Q(a, ). By the Cavalieri Principle, we have

/|u (z)|dx —/ [u;(x)|dx
E{u::

2/ Hx € Qa,r) : |u(z)] > t}}|dt
0

27|
= / {z € Qa,r): |u(x)| > t}}|dt

0
—0—/ [{z € Qla,r) : |u(z)| > t}}|dt.
[2(a,r)]
Note that

9a.r)| I92(a,r)]
/ [{z € Qa,r): lu,(x)| > t}}dt < / |Q(a,r)|dt = |Q(a,r))* < oc.
0

0

Using Theoremuand the fact )‘ ; + 1< 0, then

/ iz € Qa,r) : us(x) |>z}}|m<m/ (=
I¢

Wa,r)| | ax,r)|
= CrQ(a,r)|7 ! < .
Therefore
/ |u; (2)|dx < |Q(a,r)|* + Cr*|Qa, ‘r)|/\:ilJr1 < oc.
Q
This proves the lemma. g

Lemma 4.3, If u is defined by (4.1), then the weak derivatives of v is given by
u(x) 0G(x,y)

= l —— fy)dy,

Eroniale (/ Gz, y) f(y) rv) /Q e Wy,

Joreveryi=1 ... n.

-
Proof. Let ¢ be an arbitrary element of C5°((2). We claim that “222 f (y)g(x) € L'(Q x Q).

This is because
< ma.x|f,-'9(:::)|/ |1 (2)|dz < oo,
zef 0

Joh

which is concluded from Tonneli’s theorem and Lemma[4.2] Therefore we can use Fubini’s
theorem and to obtain

/Q( QC(: y) f(y) rh,:) d;;fj dr = Jr(y)( G(-'f%?})()ng)d:r) 0
- /f y) (/ ()(“z r;) o(a )fh)dy
0
).1

0G(z,y) y

y)¢
C Ox F(y)(z)

dydzx —/ [u; ()| ()| dex

The proof is complete.

AJIMAA, Vol. 18 (2021), No. 2, Art. 14,7 pp. AJTMAA
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The following is our main theorem. This shows that the gradient of the weak solution of (2.2)
belongs to the weak Morrey spaces.

Theorem 4.4. If u is defined by (1), then |Vu| € wLP»*(Q2) where PL/\ =1--5.

Proof. 1t is enough to proof that d’;(_} € wILP»*(Q) for every i = 1,...,n. According to
Lemmaf4.3] (4.2), and Theorem[4.1] we have

{:1: € Qa,r): ()T}.(; r)

r;
Therefore this theorem is proved. I

P
tAr—n+1

> !H < e {x e Qa,r) : |ui(z)| >t}

.
"Ilfllyi\"”-
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